Crystallization and Properties of NAD-Dependent D-Sorbitol Dehydrogenase from Gluconobacter suboxydans IFO 3257.
نویسندگان
چکیده
NAD-dependent D-sorbitol dehydrogenase (EC 1.1.1.14) was crystallized from the cytosolic fraction of Gluconobacter suboxydans IFO 3257. This is the first example of the enzyme crystallized from acetic acid bacteria. The enzyme catalyzed oxidoreduction between D-sorbitol and D-fructose in the presence of NAD or NADH. The crystalline enzyme showed a single sedimentation peak in analytical ultracentrifugation, giving an apparent sedimentation constant of 5.1s. Gel filtration on a Sephadex G-200 column gave the molecular mass of 98 kDa for the enzyme, which dissociated into 26-kDa subunits on SDS-PAGE, indicating that the enzyme is composed of four identical subunits. Oxidation of D-sorbitol to D-fructose and xylitol to D-xylulose predominated in the presence of NAD at the optimum pH of 9.5-10.0. Reductions of D-fructose to D-sorbitol and D-xylulose to xylitol were also observed in the presence of NADH with the optimum pH around 6.0. The relative rate of D-fructose reduction was about one-fourth of that of D-sorbitol oxidation. NADP and NADPH were inert for the both reactions. Since the reation rate in D-sorbitol oxidation predominated over D-fructose reduction at some alkaline pH, the enzyme could be available for direct enzymatic measurement of D-sorbitol. Even in the presence of a large excess of D-glucose and other substances, reduction of NAD to NADH was highly specific and stoichiometric to the D-sorbitol oxidized.
منابع مشابه
NADPH-dependent L-sorbose reductase is responsible for L-sorbose assimilation in Gluconobacter suboxydans IFO 3291.
The NADPH-dependent L-sorbose reductase (SR) of L-sorbose-producing Gluconobacter suboxydans IFO 3291 contributes to intracellular L-sorbose assimilation. The gene disruptant showed no SR activity and did not assimilate the once-produced L-sorbose, indicating that the SR functions mainly as an L-sorbose-reducing enzyme in vivo and not as a D-sorbitol-oxidizing enzyme.
متن کاملL-sorbose reductase and its transcriptional regulator involved in L-sorbose utilization of Gluconobacter frateurii.
Upstream of the gene for flavin adenine dinucleotide (FAD)-dependent D-sorbitol dehydrogenase (SLDH), sldSLC, a putative transcriptional regulator was found in Gluconobacter frateurii THD32 (NBRC 101656). In this study, the whole sboR gene and the adjacent gene, sboA, were cloned and analyzed. sboR mutation did not affect FAD-SLDH activity in the membrane fractions. The SboA enzyme expressed an...
متن کامل5-keto-D-gluconate production is catalyzed by a quinoprotein glycerol dehydrogenase, major polyol dehydrogenase, in gluconobacter species.
Acetic acid bacteria, especially Gluconobacter species, have been known to catalyze the extensive oxidation of sugar alcohols (polyols) such as D-mannitol, glycerol, D-sorbitol, and so on. Gluconobacter species also oxidize sugars and sugar acids and uniquely accumulate two different keto-D-gluconates, 2-keto-D-gluconate and 5-keto-D-gluconate, in the culture medium by the oxidation of D-glucon...
متن کاملPolyol Dehydrogenases of Gluconobacter Oxydans.
The secondary hydroxyl group involved in the oxidation, and the cis-vicinal secondary hydroxyl group, must have a D configuration jvith respect to t,he primary alcohol group adjacent to the site of oxidation. This specific mode of otida,tion facilitated the synthesis of several new ketoses. In a series of papers, Hudson and Richtmyer and their a.ssociates described the microbiological synthesis...
متن کاملA highly efficient sorbitol dehydrogenase from Gluconobacter oxydans G624 and improvement of its stability through immobilization
A sorbitol dehydrogenase (GoSLDH) from Gluconobacter oxydans G624 (G. oxydans G624) was expressed in Escherichia coli BL21(DE3)-CodonPlus RIL. The complete 1455-bp codon-optimized gene was amplified, expressed, and thoroughly characterized for the first time. GoSLDH exhibited Km and kcat values of 38.9 mM and 3820 s(-1) toward L-sorbitol, respectively. The enzyme exhibited high preference for N...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Bioscience, biotechnology, and biochemistry
دوره 63 9 شماره
صفحات -
تاریخ انتشار 1999